The Last Glacial Period ( LGP), also known as the last glacial cycle, occurred from the end of the Last Interglacial to the beginning of the Holocene, years ago, and thus corresponds to most of the timespan of the Late Pleistocene. It thus formed the most recent period of what is colloquially known as the "Pleistocene".
The LGP is part of a larger sequence of glacial and interglacial periods known as the Quaternary glaciation which started around 2,588,000 years ago and is ongoing. The glaciation and the current Quaternary both began with the formation of the Arctic ice cap. The Antarctic ice sheet began to form earlier, at about 34 Mya (million years ago), in the mid-Cenozoic (Eocene–Oligocene extinction event), and the term Late Cenozoic Ice Age is used to include this early phase with the current glaciation.University of Houston–Clear Lake – Disasters Class Notes – Chapter 12: Climate Change sce.uhcl.edu/Pitts/disastersclassnotes/chapter_12_Climate_Change.doc The previous ice age within the Quaternary is the Penultimate Glacial Period, which ended about 128,000 years ago, was more severe than the Last Glacial Period in some areas such as Britain, but less severe in others.
The last glacial period saw alternating episodes of glacier advance and retreat with the Last Glacial Maximum occurring between 26,000 and 20,000 years ago. While the general pattern of cooling and glacier advance around the globe was similar, local differences make it difficult to compare the details from continent to continent (see picture of ice core data below for differences). The most recent cooling, the Younger Dryas, began around 12,800 years ago and ended around 11,700 years ago, also marking the end of the LGP and the Pleistocene epoch. It was followed by the Holocene, the current geological epoch.
The LGP has been intensively studied in North America, northern Eurasia, the Himalayas, and other formerly glaciated regions around the world. The glaciations that occurred during this glacial period covered many areas, mainly in the Northern Hemisphere and to a lesser extent in the Southern Hemisphere. They have different names, historically developed and depending on their geographic distributions: Fraser (in the Pacific Cordillera of North America), Pinedale (in the Central Rocky Mountains), Wisconsinan or Wisconsin (in central North America), Devensian (in the British Isles), Midlandian (in Ireland), Würm (in the Alps), Mérida (in Venezuela), Weichselian or Vistulian (in Northern Europe and northern Central Europe), Valdai in Russia and Zyryanka in Siberia, Llanquihue in Chile, and Otira in New Zealand. The geochronological Late Pleistocene includes the late glacial (Weichselian) and the immediately preceding penultimate interglacial (Eemian) period.
The maximum extent of western Siberian glaciation was reached by about 18,000 to 17,000 BP, later than in Europe (22,000–18,000 BP). Matti Saarnisto: Climate variability during the last interglacial-glacial cycle in NW Eurasia. Abstracts of PAGES – PEPIII: Past Climate Variability Through Europe and Africa, 2001 Northeastern Siberia was not covered by a continental-scale ice sheet. Instead, large, but restricted, icefield complexes covered mountain ranges within northeast Siberia, including the Kamchatka-Koryak Mountains.
The Arctic Ocean between the huge ice sheets of America and Eurasia was not frozen throughout, but like today, probably was covered only by relatively shallow ice, subject to seasonal changes and riddled with ice calving from the surrounding ice sheets. According to the sediment composition retrieved from deep-sea core sample, even times of seasonally open waters must have occurred.
Outside the main ice sheets, widespread glaciation occurred on the highest mountains of the Alpide Belt. In contrast to the earlier glacial stages, the Würm glaciation was composed of smaller ice caps and mostly confined to valley glaciers, sending glacial lobes into the Alpine Foreland basin. Local ice fields or small ice sheets could be found capping the highest massifs of the Pyrenees, the Carpathian Mountains, the Balkan Mountains, the Caucasus, and the mountains of Turkey and Iran.
In the Himalayas and the Tibetan Plateau, there is evidence that glaciers advanced considerably, particularly between 47,000 and 27,000 BP, but the exact ages, Kuhle, M., Kuhle, S. (2010): Review on Dating methods: Numerical Dating in the Quaternary of High Asia. In: Journal of Mountain Science (2010) 7: 105–122. as well as the formation of a single contiguous ice sheet on the Tibetan Plateau, is controversial. Other areas of the Northern Hemisphere did not bear extensive ice sheets, but local glaciers were widespread at high altitudes. Parts of Taiwan, for example, were repeatedly glaciated between 44,250 and 10,680 BP as well as the Japanese Alps. In both areas, maximum glacier advance occurred between 60,000 and 30,000 BP. To a still lesser extent, glaciers existed in Africa, for example in the High Atlas, the mountains of Morocco, the Mount Atakor massif in southern Algeria, and several mountains in Ethiopia. Just south of the equator, an ice cap of several hundred square kilometers was present on the east African mountains in the Kilimanjaro massif, Mount Kenya, and the Rwenzori Mountains, which still bear relic glaciers today.
Local ice caps existed in the highest mountains of the island of New Guinea, where temperatures were 5 to 6 °C colder than at present. The main areas of Papua New Guinea where glaciers developed during the LGP were the Central Cordillera, the Owen Stanley Range, and the Saruwaged Range. Mount Giluwe in the Central Cordillera had a "more or less continuous ice cap covering about 188 km2 and extending down to 3200-3500 m". In Western New Guinea, remnants of these glaciers are still preserved atop Puncak Jaya and Ngga Pilimsit.
Small glaciers developed in a few favorable places in Southern Africa during the last glacial period. These small glaciers would have been located in the Lesotho Highlands and parts of the Drakensberg. The development of glaciers was likely aided in part due to shade provided by adjacent cliffs. Various and former glacial niches have been identified in the eastern Lesotho Highlands a few kilometres west of the Great Escarpment, at altitudes greater than 3,000 m on south-facing slopes. Studies suggest that the annual average temperature in the mountains of Southern Africa was about 6 °C colder than at present, in line with temperature drops estimated for Tasmania and southern Patagonia during the same time. This resulted in an environment of relatively arid periglaciation without permafrost, but with deep seasonal freezing on south-facing slopes. Periglaciation in the eastern Drakensberg and Lesotho Highlands produced solifluction and ; including blockstreams and stone garlands.
The effects of this glaciation can be seen in many geological features of England, Wales, Scotland, and Northern Ireland. Its deposits have been found overlying material from the preceding Ipswichian stage and lying beneath those from the following Holocene, which is the current stage. This is sometimes called the Flandrian interglacial in Britain.
The latter part of the Devensian includes I–IV, the Allerød oscillation and Bølling oscillation, and the Oldest Dryas, Older Dryas, and Younger Dryas cold periods.
The Baltic Sea, with its unique brackish water, is a result of meltwater from the Weichsel glaciation combining with saltwater from the North Sea when the straits between Sweden and Denmark opened. Initially, when the ice began melting about 10,300 BP, seawater filled the isostasy area, a temporary sea level that geologists dub the Yoldia Sea. Then, as postglacial isostatic rebound lifted the region about 9500 BP, the deepest basin of the Baltic became a freshwater lake, in palaeological contexts referred to as Ancylus Lake, which is identifiable in the freshwater fauna found in sediment cores.
The lake was filled by glacial runoff, but as worldwide sea level continued rising, saltwater again breached the sill about 8000 BP, forming a marine Littorina Sea, which was followed by another freshwater phase before the present brackish marine system was established. "At its present state of development, the marine life of the Baltic Sea is less than about 4000 years old", Drs. Thulin and Andrushaitis remarked when reviewing these sequences in 2003.
Overlying ice had exerted pressure on the Earth's surface. As a result of melting ice, the land has continued to rise yearly in Scandinavia, mostly in northern Sweden and Finland, where the land is rising at a rate of as much as 8–9 mm per year, or 1 m in 100 years. This is important for archaeologists, since a site that was coastal in the Nordic Stone Age now is inland and can be dated by its relative distance from the present shore.
During the Würm, the Rhône Glacier covered the whole western Swiss plateau, reaching today's regions of Solothurn and Aargau. In the region of Bern, it merged with the Aar glacier. The Rhine Glacier is currently the subject of the most detailed studies. Glaciers of the Reuss and the Limmat advanced sometimes as far as the Jura. Montane and piedmont glaciers formed the land by grinding away virtually all traces of the older Günz and Mindel glaciation, by depositing base moraines and terminal moraines of different retraction phases and loess deposits, and by the proglacial rivers' shifting and redepositing gravels. Beneath the surface, they had profound and lasting influence on geothermal heat and the patterns of deep groundwater flow.
The Cordilleran ice sheet produced features such as glacial Lake Missoula, which broke free from its ice dam, causing the massive Missoula Floods. USGS geologists estimate that the cycle of flooding and reformation of the lake lasted an average of 55 years and that the floods occurred about 40 times over the 2,000-year period starting 15,000 years ago. Glacial lake outburst floods such as these are not uncommon today in Iceland and other places.
It radically altered the geography of North America north of the Ohio River. At the height of the Wisconsin episode glaciation, ice covered most of Canada, the Upper Midwest, and New England, as well as parts of Montana and Washington. On Kelleys Island in Lake Erie or in New York's Central Park, the grooves left by these glaciers can be easily observed. In southwestern Saskatchewan and southeastern Alberta, a suture zone between the Laurentide and Cordilleran ice sheets formed the Cypress Hills, which is the northernmost point in North America that remained south of the continental ice sheets.
The Great Lakes are the result of glacial scour and pooling of meltwater at the rim of the receding ice. When the enormous mass of the continental ice sheet retreated, the Great Lakes began gradually moving south due to isostatic rebound of the north shore. Niagara Falls is also a product of the glaciation, as is the course of the Ohio River, which largely supplanted the prior Teays River.
With the assistance of several very broad glacial lakes, it released floods through the gorge of the Upper Mississippi River, which in turn was formed during an earlier glacial period.
In its retreat, the Wisconsin episode glaciation left that form Long Island, Block Island, Cape Cod, Nomans Land, Martha's Vineyard, Nantucket, Sable Island, and the Oak Ridges Moraine in south-central Ontario, Canada. In Wisconsin itself, it left the Kettle Moraine. The and formed at its melting edge are landmarks of the lower Connecticut River Valley.
Cryogenic features such as , patterned ground, , , , soil cryoturbation, and solifluction deposits developed in unglaciated extra-Andean Patagonia during the last glaciation, but not all these reported features have been verified. The area west of Llanquihue Lake was ice-free during the last glacial maximum, and had sparsely distributed vegetation dominated by Nothofagus. Valdivian temperate rain forest was reduced to scattered remnants on the western side of the Andes.
+ Historical names of the "four major" glacials in four regions ! Region ! Glacial 1 ! Glacial 2 ! Glacial 3 ! Glacial 4 | ||||
Alps | Gunz glaciation | Mindel | Riss glaciation | Würm |
North Europe | Eburonian | Elsterian | Saalian | Weichselian |
British Isles | Beestonian stage | Anglian Stage | Wolstonian Stage | Devensian |
Midwest U.S. | Pre-Illinoian | Kansan | Illinoian | Wisconsinan |
|
|